No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Biology
 Higher level
 Paper 2

Wednesday 20 November 2019 (afternoon)
Candidate session number
2 hours 15 minutes \square

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [72 marks].

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. The black-legged tick (Ixodes scapularis) is an arthropod which sucks blood from humans and other mammals. It is encountered mainly in wooded and semi-wooded areas.
Some ticks can be infected by the bacterium Borrelia burgdorferi. When a tick bites a human, the bacterium is often introduced, causing Lyme disease. Lyme disease is a public health problem in North America and, if left untreated, can cause important neurological impairment. The diagram represents the two-year life cycle of a tick.

[Source: Cary Institute of Ecosystem Studies / Leslie Tumblety]

(Question 1 continued)

(a) State the domain into which ticks are classified.
\square
(b) Using information from the text, identify one possible simple treatment for Lyme disease.

(This question continues on the following page)

(Question 1 continued)

Scientists fear that global warming will change the distribution range of ticks.
The graphs show the developmental stages of ticks throughout seasons in a densely human-populated area of south-eastern Canada, surrounded by woods (circled on the map). Values are already established for 2000 and are predicted for 2080.

[Source: reprinted from International Journal for Parasitology, 36(1), N.H. Ogden, A. Maarouf, I.K. Barker, M. Bigras-Poulin, L.R. Lindsay, M.G. Morshed, C.J. O'Callaghan, F. Ramay, D. Waltner-Toews, D.F. Charron, Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada, 63-70, Copyright (2006), with permission from Elsevier]
(c) Identify the month when small birds had the greatest chance of being infected by B. burgdorferi bacteria in the year 2000 and the month when they would be most likely to become infected according to the 2080 predictions.

2000: \qquad
2080: \qquad

(Question 1 continued)

(d) Using the life cycle diagram and the graph for the year 2000, analyse the distribution of adult ticks throughout the different seasons.
\qquad
(e) Evaluate the effect of the change in distribution of the different life stages of ticks on the spread of Lyme disease in south-eastern Canada.
\qquad

(This question continues on the following page)

(Question 1 continued)

White-footed mice (Peromyscus leucopus) in eastern North America's wooded areas often host B. burgdorferi bacteria. To determine whether bacterial transmission from mice to tick nymphs could be prevented, mice were vaccinated with antigens from Lyme disease-causing B. burgdorferi. Scientists captured wild mice at two different sites in the woods once a month, over 4 months. Each time, they measured the levels of antibodies to B. burgdorferi present in the captured and re-captured mice, inoculated all of them, and released them into the woods. The control group was not vaccinated with B. burgdorferi antigen.

[Source: Copyright (2004) National Academy of Sciences, U.S.A. An ecological approach to preventing human infection: Vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle, Jean I. Tsao, J. Timothy Wootton, Jonas Bunikis, Maria Gabriela Luna, Durland Fish, Alan G. Barbour, Proceedings of the National Academy of Sciences

Dec 2004, 101 (52) 18159-18164; DOI: 10.1073/pnas.0405763102]
(f) (i) State the reason for performing the experiment in the months of May to August.
\square
(This question continues on the following page)

(Question 1 continued)

(ii) Suggest possible reasons for the observed pattern of presence of antibodies in vaccinated mice.

The summer after vaccination, the prevalence of B. burgdorferi infection in tick nymphs collected on mice from the two sites was measured.

	State of infection of tick nymphs with B. burgdorferi			
	Site 1		Site 2	
Host mice	Infected	Not infected	Infected	Not infected
Control mice	90	315	57	89
Vaccinated mice	87	288	49	121

[Source: Copyright (2004) National Academy of Sciences, U.S.A. An ecological approach to preventing human infection: Vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle, Jean I. Tsao, J. Timothy Wootton, Jonas Bunikis, Maria Gabriela Luna, Durland Fish, Alan G. Barbour, Proceedings of the National Academy of Sciences Dec 2004, 101 (52) 18159-18164; DOI: 10.1073/pnas.0405763102]
(g) Analyse the data on the state of infection of tick nymphs with B. burgdorferi in control and vaccinated mice.
\qquad
(This question continues on the following page)

(Question 1 continued)

(h) Using all the data, discuss whether inoculating mice with the antigen to B. burgdorferi could be an effective method of controlling the spread of Lyme disease.
\qquad
2. The diagram shows one of Thomas Hunt Morgan's crosses of Drosophila in the early 20th century.

Parents: \quad\begin{tabular}{|c|}

\hline | Grey body - normal wings |
| :---: |
| heterozygous |
| for both genes |

\hline
\end{tabular}

Offspring: | Grey body - |
| :---: |
| normal wings |
| $n=965$ |

Black body -
vestigial wings
$n=944$

Grey body - vestigial wings $n=206$	Black body - normal wings $n=185$

Total offspring=2300
(a) State the type of inheritance shown.
\square
(b) Identify the recombinants.
\square
(This question continues on the following page)

(Question 2 continued)

(c) The chi-squared value was calculated as shown. Deduce, with reasons, whether the observed ratio differed significantly from the expected Mendelian ratio.

$$
c^{2}=\Sigma \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}=1002.6
$$

	Probability										
Degrees of freedom	$\mathbf{0 . 9 9 5}$	$\mathbf{0 . 9 7 5}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 1}$
$\mathbf{1}$	0.00004	0.001	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
$\mathbf{2}$	0.010	0.051	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
$\mathbf{3}$	0.072	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
$\mathbf{4}$	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
$\mathbf{5}$	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
$\mathbf{6}$	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
$\mathbf{7}$	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322

\qquad
3. (a) Describe what is shown in a cladogram. [2]
\qquad
(b) Outline how variation in organisms of the same species could lead to natural selection.
\qquad
4. (a) (i) State the property of amphipathic phospholipids that enables them to form a bilayer.
\qquad
(ii) State the reason cis and trans fatty acids are said to be unsaturated.
\qquad
(b) During photosynthesis plants use water in the conversion of light energy to chemical energy.
(i) State the name of this process.

(ii) Explain how water is used in photosynthesis.

5．This light micrograph shows skeletal muscle．

［Source：adapted from https：／／en．wikipedia．org／wiki／Skeletal＿muscle\＃／media／File：Skeletal＿ muscle＿\％E6\％A8\％AA\％E7\％BA\％B9\％E8\％82\％8C1．JPG，Urana／乌拉跨氪］
（a）Identify
（i）the dark structure indicated by I．
（ii）the protein producing the thick filament in the dark band indicated by II．
\square
（iii）the structure indicated by III．
\square
（This question continues on the following page）

(Question 5 continued)

(b) Discuss whether the tissue shown in the micrograph consists of cells or not.
\qquad
(c) Explain how calcium is involved in muscle contraction.
\qquad

Section B

Answer two questions. Up to one additional mark is available for the construction of your answers for each question. Answers must be written within the answer boxes provided.
6. (a) Draw the structure of a section of DNA showing all possible bases.
(b) Outline the structural and genetic characteristics of eukaryotic chromosomes.
(c) Explain how a polypeptide chain is synthesized in a eukaryotic cell.
7. (a) Outline the reasons for the differences in blood concentrations between the renal artery and the renal vein.
(b) Outline how two parents could have a child with any of the four ABO blood groups.
(c) Explain the control mechanism of the heart rate.
8. (a) Draw a half-view of an animal-pollinated flower.
(b) Outline the growth of plant shoot apex.
(c) Explain the movement of energy and inorganic nutrients in an ecosystem.
\qquad

