No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Biology
 Standard level
 Paper 2

Wednesday 20 November 2019 (afternoon)
Candidate session number
1 hour 15 minutes \square

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer one question.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. Cultivated rice, Oryza sativa, is one of the most important human foods. The two main sub-species of cultivated rice are O. sativa indica and O. sativa japonica. O. rufipogon is a wild species from which they probably evolved.
(a) State the reason that O. sativa and O. rufipogon are classified as different species.

To investigate whether the sub-species of cultivated rice evolved independently from the wild species, scientists analysed their chromosomes to find areas with similar DNA base sequences. Wild species tend to have many different alleles of genes present on each chromosome, but during the development of a crop plant by artificial selection from a wild species, this diversity drops considerably, increasing the base sequence similarity. The number of different alleles of the genes on a chromosome can be represented by a diversity index. The following graph of part of chromosome 7 shows the diversity index of O. rufipogon and two varieties of cultivated rice, O. sativa indica and O. sativa japonica. The gene PROG1 allows the plant to stand upright, which is typical of cultivated rice. Its position is indicated by the vertical arrow on the graph.

[Source: He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, et al. (2011) Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes. PLoS Genet 7(6): e1002100. https://doi.org/10.1371/journal.pgen.1002100]
(This question continues on the following page)

(Question 1 continued)

(b) Determine which type of rice has the lowest overall diversity index.
\qquad
(c) Compare and contrast the trends for O. rufipogon and O. sativa indica.
\square
(This question continues on the following page)

(Question 1 continued)

In another experiment, scientists retrieved genome sequences of the wild rice O. rufipogon taken from a wide range of geographical sites (I, II and III) and those of the two sub-species of O. sativa from gene banks.

The pie charts, presented along with a cladogram, show the proportion of alleles for three genes which confer specific characteristics to O. sativa. Mutations can produce derived alleles that are different from the original ancestral alleles. The control group represents wild rice species other than O. rufipogon.

[Source: reprinted by permission from Springer Nature: Nature, Huang, X., Kurata, N., Wei, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501 (2012) doi:10.1038/nature11532]
(d) State the proportion of the ancestral allele for the gene GS3 in the O. rufipogon-III population.
\qquad
\qquad
(e) Distinguish between the proportion of ancestral and derived alleles for all three genes in O. sativa indica and O. sativa japonica.
\qquad

(Question 1 continued)

(f) State one reason for having a control group.
\qquad
(g) Using all of the data, discuss whether there is evidence that the two sub-species of O. sativa might have evolved independently from O. rufipogon.
\qquad
2. A short base sequence of mRNA and a table of the genetic code are shown below.

Sequence of mRNA

Table of the genetic code

(a) Outline the function of codons.

(b) (i) Determine the sequence of amino acids that could be translated from the sequence of mRNA.

(Question 2 continued)

(ii) Determine the DNA base sequence transcribed to form this sequence of mRNA.
\qquad
(c) Suggest a hypothesis that accounts for the slightly different meaning of some codons in a very limited number of organisms.

(d) The diagram shows a section of a polypeptide.

(i) Annotate the diagram to show a peptide bond between two amino acids.
(ii) State the type of reaction that removes water while linking amino acids together to form polypeptides.
\square
(This question continues on the following page)

(Question 2 continued)

(e) Outline the function of Rubisco and of spider silk in relation to their three-dimensional conformation.

	Function	Conformation
Rubisco		
Spider silk		

3. (a) Outline the cell theory.
\qquad

(b) State two functions of life.

\square
(This question continues on the following page)

(Question 3 continued)

(c) List three characteristics of eukaryotic homologous chromosomes.

(d) Using the following table, compare and contrast anaerobic cell respiration in yeasts and in humans. The first row has been completed as an example.

	Yeasts	Humans
Small yield of ATP	yes	yes
Require oxygen		
Produce ethanol and CO_{2}		
Produce lactate		

4. (a) State the immediate consequence of a species producing more offspring than the environment can support.
(b) Explain the consequence of overpopulation on the survival and reproduction of better adapted individuals within a population.
\qquad

Section B

Answer one question. Up to one additional mark is available for the construction of your answer. Answers must be written within the answer boxes provided.
5. (a) Draw a section of the Singer-Nicolson model of an animal cell membrane.
(b) Outline the principles used by scientists to classify organisms.
(c) Explain the movement of energy and inorganic nutrients in an ecosystem.
6. (a) Outline how cuts in the skin are sealed to prevent blood loss.
(b) Outline how two parents could have a child with any of the four ABO blood groups.
(c) Explain how ventilation and lung structure contribute to passive gas exchange.
\qquad

