Markscheme

May 2019

Physics

Higher level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Subject Details: Physics HL Paper 3 Markscheme

Candidates are required to answer all questions in Section A and all questions from one option in Section B. Maximum total $=45$ marks.

1. Each row in the "Question" column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the "Total" column.
3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by "max" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
5. An alternative wording is indicated in the "Answers" column by a slash (I). Either wording can be accepted.
6. An alternative answer is indicated in the "Answers" column by "OR". Either answer can be accepted.
7. An alternative markscheme is indicated in the "Answers" column under heading ALTERNATIVE 1 etc. Either alternative can be accepted.
8. Words inside chevrons «» in the "Answers" column are not necessary to gain the mark.
9. Words that are underlined are essential for the mark.
10. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by OWTTE (or words to that effect) in the "Notes" column.
12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. When marking, indicate this by adding ECF (error carried forward) on the script. "ECF acceptable" will be displayed in the "Notes" column.
14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.

Section A

Question			Answers	Notes	Total
1.	a	i	error in $m_{1}+m_{2}$ is $1 \% \mathbf{O R}$ error in $m_{1}-m_{2}$ is 40% OR error in a is 1 \% V adds percentage errors \checkmark so error in g is 42 \% OR 40 \% OR 41.8\% \checkmark	Allow answer 0.42 or 0.4 or 0.418 . Award [0] for comparing the average value with a known value, e.g. $9.81 \mathrm{~m} \mathrm{~s}^{-2}$.	3
1.	a	ii	$\begin{aligned} & g=9.996<\mathrm{m} \mathrm{~s}^{-2} » O R \Delta g=4.20 « \mathrm{~m} \mathrm{~s}^{-2} » \checkmark \\ & g=(10 \pm 4) « \mathrm{~ms} \mathrm{~s}^{-2} » \end{aligned}$ OR $g=(10.0 \pm 4.2)<\mathrm{ms}^{-2} » \checkmark$	Award [1] max for not proper significant digits or decimals use, such as: 9.996 ± 4.178 or 10 ± 4.2 or 10.0 ± 4 or $10.0 \pm 4.18 《 \mathrm{~m} \mathrm{~s}^{-2} »$.	2
1.	b	i	the acceleration would be small/the time of fall would be large \checkmark easier to measure /a longer time of fall reduces the \% error in the time of fall and «hence acceleration»	Do not accept ideas related to the mass/moment of inertia of the pulley.	2
1.	b	ii	the percentage error in the difference of the masses is large \checkmark leading to a large percentage error/uncertainty in $g / o f$ the experiment \checkmark	Do not accept ideas related to the mass/moment of inertia of the pulley.	2

Question		Answers	Notes	Total
2.	a	theory $« \mathrm{H}=\mathrm{cD}{ }^{\left(\frac{2}{3}\right)}$ » predicts that $H^{3} \propto D^{2} \checkmark$ graph « of H^{3} vs $D^{2} »$ is a straight line through the origin/graph of proportionality \checkmark	Allow $H=c D^{\left(\frac{2}{3}\right)}$ gives $H^{3}=c^{3} D^{2}$ for MP1. Do not award MP2 for "the graph is linear" without mention of origin.	2
2.	b	evidence of gradient calculation to give gradient $=3.0 \checkmark$ $c^{3}=3.0 \Rightarrow c=1.4 \checkmark$ $m^{\frac{1}{3}} \checkmark$		3
2.	c	the load/the thickness of paper/the type of paper/ the number of times the paper is rolled to form a cylinder \checkmark		1

Section B

Option A - Relativity

Question			Answers	Notes	Total
3.	a	$c-v \checkmark$			1
3.	b	$c \checkmark$			1
3.	c	$c \checkmark$			1

Question			Answers	Notes	Total
4.	a	i	time of travel is $« \frac{3230}{0.98 \times 3.0 \times 10^{8}} »=1.10 \times 10^{-5}$ «s» \downarrow which is $« \frac{1.10 \times 10^{-5}}{2.20 \times 10^{-6}} »=5.0$ half-lives \checkmark so fraction arriving as muons is $« \frac{1}{2^{5}} »=\frac{1}{32}$ OR 3%	Award [3] for a bald correct answer.	3
4.	a	ii	time of travel corresponds to $« \frac{1.10 \times 10^{-5}}{5.0 \times 2.20 \times 10^{-6}}$ 》 $=1.0$ half-life \checkmark so fraction arriving as muons is $\frac{1}{2}$ OR $50 \% \checkmark$	Award [2] for a bald correct answer.	2
4.	b		observer measures the distance to the surface to be shorter « by a factor of 5.0 » / length contraction occurs \downarrow so time of travel again corresponds to « $\frac{\left(\frac{\frac{3230}{5.0}}{0.98 \times 3.0 \times 10^{8}}\right)}{\left(2.20 \times 10^{-6}\right)} »=1.0$ half-life \checkmark		2

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	b		ALTERNATIVE 1 the rocket would have to travel faster than the speed of light \checkmark so impossible \checkmark ALTERNATIVE 2 drawing of future lightcone at origin \checkmark and seeing that the asteroid explodes outside the lightcone so impossible \checkmark ALTERNATIVE 3 the event was observed at +20 years, but its distance (stationary) is 100 ly \checkmark so the asteroid event happened 80 years before $t=0$ for the galactic observer \checkmark		2
5.	c		$100^{2}-20^{2}=9600$ «ly ${ }^{2}$ » \checkmark	Also accept 98 (the square root of 9600). Allow negative value.	1
5.	d	i	$\begin{aligned} & 9600=120^{2}-c^{2} t^{2} \\ & c t=«-» 69.3 \text { «ly» } / t=«-» 69.3 \text { «y» } \end{aligned}$	Allow approach with Lorentz transformation.	2

(continued...)
(Question 5 continued)

Question		Answers	Notes	Total	
5.	d	ii	line from event 2 parallel to x ' axis intersects $c t^{\prime}$ axis at a negative value \checkmark event 2 occurred first \checkmark	2	
5.	e		use of $\tan \theta=\frac{v}{c}$ with the angle between the time axes \checkmark to get $(0.70 \pm 0.02) c \checkmark$	2	

Question		Answers	Notes	Total
6.	a	momentum of xi baryon is also 289.7 « $\mathrm{MeV} \mathrm{c}^{-1} » \checkmark$ total energy of xi baryon and pion is $\sqrt{289.7^{2}+1321^{2}}+\sqrt{289.7^{2}+135.0^{2}}=1672$ «MeV» \checkmark which equals the rest energy of the omega \checkmark	Allow a backwards argument, assuming the energy is equal.	3
6.	b	$\begin{aligned} & \gamma «=\frac{\sqrt{289.7^{2}+135.0^{2}}}{135.0} »=2.367 \\ & v «=\sqrt{1-\frac{1}{2.367^{2}}} c »=0.906 c \end{aligned}$	Award [2] for bald correct answer.	2

7.	a		a freely falling frame in a gravitational field is equivalent to an inertial frame OR a frame accelerating in free space is equivalent to a frame at rest in a gravitational field \checkmark		
7.	b	i	Xis in an inertial frame \checkmark so light will follow a straight line path «parallel to the floor of the box »		
7.	b	ii	ALTERNATIVE 1 light must hit right wall of box at same place as determined by $X \checkmark$ «but box is accelerating»so path must be curved downward \checkmark ALTERNATIVE 2 light is affected by gravity «for the observer at rest to the ground» \checkmark so the path is curved downward/toward the ground \checkmark	$\mathbf{2}$	

Option B — Engineering physics

Question			Answers	Notes	Total
8.	a	i	equations of motion are: $T R=\frac{1}{2} M R^{2} \alpha$ and $\frac{M g}{4}-T=\frac{M}{4} a$ OR $\frac{M}{4} g R=\frac{1}{2} M R^{2} \alpha+\frac{M}{4} R a \checkmark$ use of $a=\alpha R \checkmark$ combine equations to get result \checkmark	Allow energy conservation use. This is a show that question, so look for correct working. Do not allow direct use of tension from a ii).	3
8.	a	ii	use of $T=\frac{1}{2} M R \alpha$ to find $T=\frac{1}{2} M R \times \frac{g}{3 R} \checkmark$ « cancelling to show final answer »		1
8.	b		$\begin{aligned} & a=3.27 \text { «m s}^{-2} » / a=g / 3 \checkmark \\ & t=\sqrt{\frac{2 s}{a}}=\sqrt{\frac{2 \times 0.50}{3.27}} \checkmark \\ & =0.55 \text { «s» } \end{aligned}$	Do not apply ECF from MP1 to MP2 if for a=g, giving answer 0.32 s.	2

(continued...)
(Question 8 continued)

Question			Answers	Notes	Total
8.	C	i	ALTERNATIVE 1 $\begin{aligned} & \Delta L «=\Gamma \Delta t=T R \Delta t »=\frac{12 \times 9.81 \times 0.20 \times 0.55}{6} \\ & \Delta L=2.2 \text { «Js» } \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & \omega=<\alpha \Delta t=\frac{g}{3 R} \Delta t=\frac{9.81 \times 0.55}{3 \times 0.20}=>8.99 \text { «rads }^{-1} » \\ & \Delta L «=I \omega »=\frac{1}{2} \times 12 \times 0.20^{2} \times 8.99=2.2 « \mathrm{Js} » \end{aligned}$	Award [2] for a bald correct answer.	2
8.	C	ii	$\begin{aligned} & \omega=<\alpha \Delta t=\frac{g}{3 R} \Delta t=\frac{9.81 \times 0.55}{3 \times 0.20}=>8.99 \text { rrads }^{-1} » \\ & E_{K}=« \frac{1}{2} I \omega^{2}=\frac{1}{4} M R^{2} \omega^{2}=\frac{1}{4} \times 12 \times 0.20^{2} \times 8.99^{2}=» 9.7 « \mathrm{~J} » \end{aligned}$	Award [2] for a bald correct answer.	2

Question			Answers	Notes	Total
9.	a		substitution of $P=\frac{n R T}{V}$ in $P_{X} V_{X}^{\frac{5}{3}}=P_{Y} V_{Y}^{\frac{5}{3}} \checkmark$ manipulation to get result $\sqrt{ }$		2
9.	b	i	$e «=1-\frac{T_{c}}{T_{h}}=1-\frac{340}{620} »=0.45 \checkmark$		1
9.	b	ii	heat into gas « is along $A B$ » and equals $Q_{i n} «=\Delta U+W=0+540 »=540 \text { « } » \downarrow$ heat out is $(1-e) Q_{i n}=(1-0.45) \times 540=297 « \mathrm{~J} » \approx 3.0 \times 10^{2}$ « $\mathrm{J} »$	Award [2] for bald correct answer.	2
9.	b	iii	$\begin{aligned} & T_{B} V_{B}^{\frac{2}{3}}=T_{C} V_{C}^{\frac{2}{3}} \Rightarrow \frac{V_{C}}{V_{B}}=\left(\frac{T_{B}}{T_{C}}\right)^{\frac{3}{2}} V \\ & \frac{V_{C}}{V_{B}}=\left(\frac{620}{340}\right)^{\frac{3}{2}}=2.5 \end{aligned}$	Award [2] for bald correct answer.	2
9.	C	i	$\Delta S «=\frac{Q}{T}=\frac{540}{620} »=0.87$ « $\mathrm{JK}^{-1} » \checkmark$		1
9.	C	ii	the Carnot cycle has the maximum efficiency «for heat engines operating between two given temperatures » \checkmark real engine can not work at Carnot cycle/ideal cycle \checkmark the second law of thermodynamics says that it is impossible to convert all the input heat into mechanical work \checkmark a real engine would have additional losses due to friction etc \checkmark		2 max

Question			Answers	Notes	Total
10.	a		flow must be laminar/steady/not turbulent $\sqrt{ }$ fluid must be incompressible/have constant density \checkmark fluid must be non viscous $\sqrt{ }$		1 max
10.	b	i	«continuity equation says» $A v=$ constant « and the areas are the same» \checkmark		1
10.	b	ii	$\begin{aligned} & \text { Bernoulli: « } \frac{1}{2} \rho v_{X}^{2}+0+P_{X}=\frac{1}{2} \rho v_{Y}^{2}+\rho g H+P_{Y} » \text { gives } P_{X}-P_{Y}=\rho g H \\ & P_{X}-P_{Y}=720 \times 9.81 \times 1.2=8.5 « \mathrm{kPa} » \end{aligned}$	Award [2] for bald correct answer. Watch for POT mistakes.	2
10.	b	iii	the fluid speed at Y will be greater «than that at X » \checkmark reducing the pressure at Y OR the formula used to show that the difference is increased \checkmark		2

Question		Answers	Notes	Total
11.	a	ALTERNATIVE 1 $\begin{aligned} & « Q=2 \pi \frac{E_{0}}{E_{0}-E_{1}} » \Rightarrow E_{1}=\left(1-\frac{2 \pi}{Q}\right) E_{0} \checkmark \\ & E_{1} «=\left(1-\frac{2 \pi}{25}\right) \times 12 »=9.0 « \mathrm{~mJ} » \end{aligned}$ reading off the graph, period is 0.48 «s» ALTERNATIVE 2 $\begin{aligned} & \text { use of } Q=2 \pi f \frac{\text { energy stored }}{\text { power loss }} \checkmark \\ & \text { energy stored= } 12 \text { « } \mathrm{mJ} \text { »AND power loss }=5.6 « \mathrm{~mJ} / \mathrm{s} » \checkmark \\ & « f=1.86 \mathrm{~s} \text { so » period is } 0.54 « \mathrm{~s} » \checkmark \end{aligned}$	Award [3] for bald correct answer. Allow correct use of any value of E_{0}, not only at the time $=0$. Allow answer from interval $0.42-0.55 \mathrm{~s}$ Allow answer from interval $0.42-0.55 \mathrm{~s}$.	3
11.	b	similar shape graph starting at 12 mJ and above the original \checkmark		1

Option C - Imaging

| Question | | Answers | Total |
| :---: | :--- | :--- | :--- | :--- | :--- |
| smooth curve of correct curvature continuous at the boundary as | | | |
| shown \checkmark | | | |
| wavelength must be half the one in air; judge by eye \checkmark | | | |

Question			Answers	Notes	Total
13.	a	i	F half-way between C and mirror vertex and on the principal axis \checkmark		1
13.	a	ii	one correct ray \checkmark second correct ray that allows the image to be located image drawn \checkmark		3
13.	a	iii	image will be less bright / dimmer \checkmark		1

(continued...)
(Question 13 continued)

Question		Answers	Notes	Total
13.	b	«image distance is $\frac{1}{v}=\frac{1}{1.5}-\frac{1}{3.8 \times 10^{8}}$ ie» $v=1.5$ «m» \checkmark $m=-\frac{1.5}{3.8 \times 10^{8}} \checkmark$ image diameter is $\frac{1.5}{3.8 \times 10^{8}} \times 3.5 \times 10^{6}=1.4$ «cm» \checkmark	Award [3] for bald correct answer.	3

Question			Answers	Notes	Total
14.	a	i	$\begin{aligned} & « \sin \theta_{c}=\frac{n_{1}}{n_{2}} » \sin \theta_{c}=\frac{1.276}{1.620} \checkmark \\ & \theta_{c}=51.97^{\circ} \checkmark \end{aligned}$	Award [2] for bald correct answer.	2
14.	a	ii	angle of refraction at air-core boundary is $90^{\circ}-\theta_{c}$ $\begin{aligned} & «=90.00^{\circ}-51.97^{\circ}=38.03^{\circ} » \checkmark \\ & 1.000 \times \sin \theta_{\max }=1.620 \times \sin 38.03^{\circ} \checkmark \\ & \theta_{\max }=86.41^{\circ} \checkmark \end{aligned}$		3
14.	a	iii	« $\theta_{\text {max }}$ is almost 90° which means that» a ray entering the core almost at any angle will be totally internally reflected/will not escape \checkmark		1
14.	a	iv	rays will follow very different paths in the core \checkmark leading to waveguide dispersion/different arrival times/pulse overlap \checkmark		2
14.	b		Reference to 2 of: secure/encrypted transfer of data \checkmark high bandwidth/volume of data transferred \checkmark high quality/minimal noise in transmission \checkmark free from cross talk \checkmark low «specific» attenuation \checkmark		2 max

Question		Answers	Notes	Total
15.	a	mention of AC voltage $O \boldsymbol{R}$ to piezo-electric crystal \checkmark crystal vibrates « at its resonant frequency »		2
15.	b	1 MHz waves have shorter wavelength than $0.1 \mathrm{MHz} \checkmark$ can probe smaller size areas of organs/have higher resolution \checkmark		2
15.	C	a B scan is a computer generated combination of a large number of A scans \checkmark allowing a measurement in different directions/two dimensional image \checkmark		2

| 16. | \mathbf{a} | $I_{0} e^{-0.24 \times 7.8} \checkmark$
 $0.15 I_{0} \checkmark$ | Award [2] for bald correct answer. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 16. | \mathbf{b} | to produce an X-ray image there must be constrast/a difference in the intensity of the
 beam transmitted through tissue and the bowel $\sqrt{ }$
 introduction of air will produce contrast \checkmark | $\mathbf{2}$ |

Option D - Astrophysics

Question			Answers	Notes	Total
17.	a	i	$L_{X}=5.0^{3.5} L_{\odot}=279.5 L_{\odot} \checkmark$	Correct working or answer to 4 sig figs required.	1
17.	a	ii	$\begin{aligned} & \frac{L_{x}}{L_{\odot}}=280=\frac{R_{X}^{2}}{R_{\odot}^{2}} \frac{T_{x}^{4}}{T_{\odot}^{4}} \checkmark \\ & \frac{T_{X}}{T_{\odot}} «=\sqrt[4]{\frac{280}{3.2^{2}}} \gg 2.3 \mathrm{~V} \end{aligned}$	Award [2] for bald correct answer.	2
17.	b	i	the position of the star is recorded 6 months apart OR the radius/diameter of the Earth orbit clearly labelled on a diagram \checkmark the parallax is measured from the shift of the star relative to the background of the distant stars \checkmark	For MP2 accept a correctly labelled parallax angle on a diagram. Award MP2 only if background distance stars are mentioned.	2
17.	b	ii	$\begin{aligned} & d=\frac{1}{0.125}=8.0 \text { «pc» } \\ & d=8.0 \times 3.26 \times \frac{9.46 \times 10^{15}}{1.5 \times 10^{11}} \text { «AU» } \\ & «=1.64 \times 10^{6} \mathrm{AU} \end{aligned}$		2

(continued...)
(Question 17 continued)

Question			Answers	Notes	Total
17.	b	iii	ALTERNATIVE 1 $\frac{b_{X}}{1400}=\frac{\frac{280}{4 \pi\left(1.6 \times 10^{6}\right)^{2}}}{\frac{1}{4 \pi(1)^{2}}}$ OR $\begin{aligned} & b_{x}=\frac{279.5}{4 \pi \times\left(1.6 \times 10^{6} \times 1.5 \times 10^{11}\right)^{2}} \text { and } b_{\odot}=\frac{L_{\odot}}{4 \pi \times\left(1.5 \times 10^{11}\right)^{2}} \\ & b_{x}=1.5 \times 10^{-7} « \mathrm{~W} \mathrm{~m}^{-2} » \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & \frac{b_{x}}{b_{\odot}}=\frac{L_{x}}{L_{\odot}} \times\left(\frac{d_{\odot}^{2}}{d_{x}^{2}}\right) O R \frac{b_{x}}{b_{\odot}}=\frac{280}{\left(1.6 \times 10^{6}\right)^{2}} O R \frac{b_{x}}{b_{\odot}}=1.094 \times 10^{-10} \mathrm{Wm}^{-2} \checkmark \\ & b_{x}=1.09375 \times 10^{-10} \times 1400 \quad b_{x}=1.5 \times 10^{-7} \mathrm{Wm}^{-2} \checkmark \end{aligned}$	Award [2] for bald correct answer. Allow ECF from MP1 to MP2	2

(continued...)
(Question 17 continued)

Question			Answers	Notes	Total
17.	C	i		Allow any region with L below Sun and left to the main sequence.	1
17.	c	ii	an electron degeneracy « pressure develops that opposes gravitation »/reference to Pauli principle \checkmark		1
17.	c	iii	thermal energy/internal energy \checkmark		1
17.	c	iv	« temperature decreases so » luminosity decreases \checkmark		1

Question			Answers	Notes	Total
18.	a	i	« the received» wavelength is longer than that emitted \checkmark	Allow context of Doppler redshift as well as cosmological redshift.	1
18.	a	ii	$\begin{aligned} & v=z c=0.15 \times 3.0 \times 10^{5}=4.5 \times 10^{4} « \mathrm{~km} \mathrm{~s}^{-1} » \\ & d=\frac{v}{H_{0}}=\frac{4.5 \times 10^{4}}{72}=625 « \mathrm{Mpc»} \end{aligned}$	Award [2] for bald correct answer. Accept in other units, eg, $1.95 \times 10^{25} \mathrm{~m}$.	2
18.	b	i	the radiation has a black body spectrum/it is black body radiation \checkmark the radiation is highly isotropic/uniform \checkmark matched the « predicted» wavelength/temperature if the Big Bang had increased/cooled by expansion \checkmark		2 max
18.	b	ii	peak wavelength read off graph as (1.1 ± 0.05) «mm» \checkmark substitution into Wien's law to get $T=(2.5$ to 2.8$) « K » ~ \checkmark$		2

Question		Answers	Total		
19.	a	\mathbf{i}	ALTERNATIVE 1 a white dwarf star in a binary system accretes mass from the companion star \checkmark when the white dwarf star mass reaches the Chandrasekhar limit the star explodes « due to fusion reactions » \checkmark ALTERNATIVE 2 it can be formed in the collision of two white dwarf stars \checkmark where shock waves from the collision rip both stars apart \checkmark	Notes	
19.	a	ii	a red supergiant star explodes when its core collapses \checkmark		
19.	b		«it was necessary » to measure the distance « of very distant objects more accurately » \checkmark type la are standard candles/objects of known luminosity \checkmark	$\mathbf{2}$	

Question			Answers	Notes	Total
20.	a		«according to general relativity» space expands stretching distances between far away objects \checkmark wavelengths of photons «received a long time after they were emitted» are thus longer leading to the observed redshift \downarrow	Do not accept references to the Doppler effect.	2
20.	b	i			1
20.	b	ii	« since $T \propto \frac{1}{R}$ » the temperature drops for both models \checkmark but in the accelerating model R increases faster and so the temperature drops faster \checkmark		2

