N18/4/PHYSI/HP2/ENG/TZ0/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

November 2018

Physics

Higher level

Paper 2

18 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Q	uesti	on	Answers	Notes	Total
1.	а		change in momentum each second = $6.6 \times 10^{-6} \times 5.2 \times 10^{4} \text{ s} = 3.4 \times 10^{-1} \text{ kg m s}^{-1} \text{ s} \checkmark$ acceleration = $\left(\frac{3.4 \times 10^{-1}}{740}\right) = 3.6 \times 10^{-4} \text{ s} \text{ m s}^{-2} \text{ s} \checkmark$		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration = $\frac{30}{6.6 \times 10^{-6}}$ = «4.6×10 ⁶ » «s» (max speed = «answer to (a) × 4.6×10 ⁶ =» 2.1×10 ³ «m s ⁻¹ » 		2
1.	b	ii	as fuel is consumed total mass changes/decreases so acceleration changes/increases OR external forces (such as gravitational) can act on the spacecraft so acceleration isn't constant ✓		1

(Question 1 continued)

Question		on	Answers	Notes	Total	
1.	b	iii	problem may be too complicated for exact treatment \checkmark			
			to make equations/calculations simpler √			
			when precision of the calculations is not important \checkmark		1 max	
			some quantities in the problem may not be known exactly \checkmark			
1.	с	i	ions have same (sign of) charge ✔		0	
			ions repel each other 🗸		2	
1.	с	ii	the forces between the ions do not affect the force on the spacecraft. \checkmark		ſ	
			there is no effect on the acceleration of the spacecraft. \checkmark		2	

C	uestic	on	Answers	Notes	Total
2.	a		ALTERNATIVE 1: $r = \sqrt{\frac{\rho l}{\pi R}}$ OR $\sqrt{\frac{7.2 \times 10^{-7} \times 12.5}{\pi \times 0.1}}$ ✓ $r = 5.352 \times 10^{-3}$ ✓ 5.4×10^{-3} «m» ✓ ALTERNATIVE 2: $A = \frac{7.2 \times 10^{-7} \times 12.5}{0.1}$ ✓ $r = 5.352 \times 10^{-3}$ ✓ 5.4×10^{-3} «m» ✓	For MP2 accept any SF For MP3 accept only 2 SF For MP3 accept ANY answer given to 2 SF For MP2 accept any SF For MP3 accept only 2 SF For MP3 accept ANY answer given to 2 SF	3
2.	b		current in lamp = $\frac{5}{24}$ «= 0.21» «A» OR $n = 24 \times \frac{8}{5}$ √ so «38.4 and therefore» 38 lamps √	Do not award ECF from MP1	2

(Question 2 continued)

Question		on	Answers	Notes	Total
2.	С			Accept converse arguments for adding lamps in series:	
			when adding more lamps in parallel the brightness stays the same \checkmark	when adding more lamps in series the brightness decreases	
			when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✔	when adding more lamps in series the pd decreases	
			when adding more lamps in parallel the current through each remains the same \checkmark	when adding more lamps in series the current decreases	
			lamps can be controlled independently \checkmark	lamps can't be controlled independently	1 max
			the pd across each bulb is larger in parallel \checkmark	the pd across each bulb is smaller in series	
			the current in each bulb is greater in parallel \checkmark	the current in each bulb is smaller in series	
			lamps will be brighter in parallel than in series \checkmark		
			In parallel the pd across the lamps will be the operating value/24 V \checkmark	in series the pd across the lamps will less than the operating value/24 V	
				Do not accept statements that only compare the overall resistance of the combination of bulbs.	

Question		on	Answers	Notes	Total
2.	d	i	«as flux linkage change occurs in core, induced emfs appear so» <u>current</u> is <u>induced</u> √		
			induced currents give rise to resistive forces \checkmark		
			eddy currents cause thermal energy losses «in conducting core» ✓		2 max
			power dissipated by eddy currents is drawn from the primary coil/reduces power delivered to the secondary \checkmark		
2.	d	ii	power = 190 <i>OR</i> 192 «W» √		
			required power = $190 \times \frac{100}{95}$ ≪ = 200 or 202 W » ✓		
			so $\frac{200}{240} = 0.83$ OR 0.84 «A rms» \checkmark		4
			peak current = $(0.83 \times \sqrt{2} \ OR \ 0.84 \times \sqrt{2}) = 1.2/1.3$		
			«A» ✓		

Q	uestio	on	Answers	Notes	Total
3.	а		force × time <i>OR</i> change in momentum √		1
3.	b	i	$E_{\rm k} = {\rm mgh} = 0.058 \times 9.81 \times 1.1 = 0.63 {\rm J} {\rm \checkmark}$	Allow use of $g = 10 \text{ m s}^{-2}$ (which gives 0.64 «J») Substitution and at least 2 SF must be shown	1
3.	b	ii	ALTERNATIVE 1: initial momentum = $mv = \sqrt{2 \times 0.058 \times 0.63} \approx 0.27 \text{ kg m s}^{-1} \approx 0.07 \text{ kg m s}^{-1} \approx 0.07 \text{ kg m s}^{-1} \approx 0.058 \times \sqrt{2 \times 9.81 \times 1.1} \approx 0.27 \text{ kg m s}^{-1} \approx 1000000000000000000000000000000000000$	Accept negative acceleration and force.	4

(Question 3 continued)

Question		on	Answers	Notes	Total
3.	b	iii	ALTERNATIVE 1:	Allow reverse argument for grass.	
			concrete reduces the stopping time/distance \checkmark		
			impulse/change in momentum same so force greater		
	OR		OR		
			work done same so force greater ✔		2
			ALTERNATIVE 2:		
			concrete reduces the stopping time \checkmark		
			deceleration is greater so force is greater \checkmark		

C	uesti	on	Answers	Notes	Total
4.	а	i	horizontal line shown in centre of pipe ✓		1
4.	а	ii	«air molecule» moves to the right and then back to the left \checkmark returns to X/original position \checkmark		2
4.	b		wavelength = $2 \times 1.4 \ll 2.8 \text{ m} \gg \checkmark$ $c = \ll f \lambda = \gg 120 \times 2.8 \ll 340 \text{ m s}^{-1} \gg \checkmark$ $K = \ll \rho c^2 = 1.3 \times 340^2 = \gg 1.5 \times 10^5 \checkmark$ $\text{kg m}^{-1} \text{ s}^{-2} \checkmark$		4
4.	с	i	construction showing formation of image √	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	С	ii	interference pattern is observed OR interference/superposition mentioned \checkmark maximum when two waves occur in phase/path difference is n λ OR minimum when two waves occur 180° out of phase/path difference is (n + 1/2) $\lambda \checkmark$		2

C	uesti	on	Answers	Notes	Total
5.	а	i	identifies $\lambda = 435 \text{ nm } \checkmark$ $E = \ll \frac{hc}{\lambda} = \gg \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4.35 \times 10^{-7}} \checkmark$ $4.6 \times 10^{-19} \ll J \gg \checkmark$		3
5.	а	ii	-0.605 <i>OR</i> –0.870 <i>OR</i> –1.36 to –5.44 <i>AND</i> arrow pointing downwards ✓	Arrow MUST match calculation in (a)(i) Allow ECF from (a)(i)	1
5.	а	iii	Difference in energy levels is equal to the energy of the photon \checkmark		
			Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one ✓		2

(Question 5 continued)

Question		on	Answers	Notes	Total
5.	b	i	$\frac{\lambda}{2\Delta\lambda} = \frac{656.20}{0.181 \times 2} = 1813 \text{ (lines) } \checkmark$ so spacing is $\frac{3.5 \times 10^{-3}}{1813} \text{ (spectrum of m)} \checkmark$	Allow use of either wavelength or the mean value Must see at least 2 SF for a bald correct answer	2
5.	b	ii	$2 \times 4.1 \times 10^{-7} = 1.9 \times 10^{-6} \sin \theta_{v} \text{ seen}$ <i>OR</i> $6.6 \times 10^{-7} = 1.9 \times 10^{-6} \sin \theta_{r} \text{ seen } \checkmark$ $\theta_{v} = 24 - 26 \text{e}^{\circ} $ <i>OR</i>		3
			$\theta_r = 19 - 20 \text{(°)} ($	For MP3 answer must follow from answers in MP2 For MP3 do not allow ECF from incorrect angles	
5.	b	iii	centre of pattern is white ✓		
			coloured fringes are formed \checkmark		
			blue/violet edge of order is closer to centre of pattern		
			OR		2 may
			red edge of order is furthest from centre of pattern \checkmark		JIIIdX
			the greater the order the wider the pattern \checkmark		
			there are gaps between «first and second order» spectra \checkmark		

Question		on	Answers	Notes	Total
6.	а	i	it is constant √		1
	а	ii	$R = 1.20 \times 10^{-15} \times 31^{\frac{1}{3}} = 3.8 \times 10^{-15} \text{ sm}$	Must see working and answer to at least 2SF	1
6.	b	i	separation for interaction = 5.3 or 5.5 «fm» √		1
6.	b	ii	energy required = $\frac{15e^2}{4\pi\varepsilon_0 \times 5.3 \times 10^{-15}}$ = 6.5 / 6.6 × 10 ⁻¹³ OR = 6.3 × 10 ⁻¹³ «J» \checkmark	Allow ecf from (b)(i)	2
6.	С		«electron» <u>antineutrino</u> also emitted \checkmark energy split between electron and «anti»neutrino \checkmark		2
6.	d	i	probability of decay of a nucleus ✓ <i>OR</i> the fraction of the number of nuclei that decay in one/the next second <i>OR</i> per unit time ✓		2
6.	d	ii	1 week = 6.05×10^5 «s» ✓ 17 = $24e^{-\lambda \times 6.1 \times 10^5}$ ✓ 5.7 × 10^{-7} «s ⁻¹ » ✓	Award [2 max] if answer is not in seconds If answer not in seconds and no unit quoted award [1 max] for correct substitution into equation (MP2)	3

Question		Answers	Notes	Total
7.	а	charge stored on capacitor = $12 \times 10^{-3} \times 7.5 = 0.09$ «C» \checkmark		1
7.	b	energy stored in capacitor $\left(\frac{1}{2}CV^{2}or\frac{1}{2}QV\right) = \frac{1}{2} \times 12 \times 10^{-3} \times 7.5^{2} \ll 0.338 \text{ J} \text{ J}$ height = $\left(\frac{1}{3} \times \frac{0.338}{9.81 \times 4.5 \times 10^{-2}}\right) = \frac{0.25}{0.26} \ll 12^{-3} \text{ J}$	Allow use of g = 10 m s ⁻² which gives 0.25 «m»	2
7.	С	C <u>halved</u> ✓ so energy stored is halved/reduced so rises «less than» half height ✓ discharge time/raise time less as RC halved/reduced ✓	Allow 6 mF	3

Question		on	Answers	Notes	Total
8.	а	i	force per unit mass ✓ acting on a small/test/point mass «placed at the point in the field» ✓		2
8.	а	ii	Mars is spherical/a sphere «and of uniform density so behaves as a point mass» ✓ satellite has a much smaller mass/diameter/size than Mars «so approximates to a point mass» ✓		2
8.	b	i	$\ll \frac{mv^2}{r} = \frac{GMm}{r^2} \text{ hences } v = \sqrt{\frac{GM}{R}} \text{ . Also } v = \frac{2\pi R}{T}$ OR $m\omega^2 r = \frac{GMm}{r^2} \text{ hence } \omega^2 = \frac{GM}{R^3} \checkmark$ uses either of the above to get $T^2 = \frac{4\pi^2}{GM}R^3$ OR uses $k = \frac{4\pi^2}{GM} \checkmark$ $k = 9.2 \times 10^{-13} / 9.3 \times 10^{-13} \checkmark$	Unit not required	3

(Question 8 continued)

Question		on	Answers	Notes	Total
8.	b	ii	$R^{3} = \frac{T^{2}}{k} = \frac{\left(8.9 \times 10^{4}\right)^{2}}{9.25 \times 10^{-13}} R = 2.04 \times 10^{7} \text{ sms } \checkmark$ $v = \ll \omega r = \frac{2\pi \times 2.04 \times 10^{7}}{89000} = \gg 1.4 \times 10^{3} \text{ sms}^{-1} \gg$ OR $v = \ll \sqrt{\frac{GM}{R}} = \sqrt{\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{2.04 \times 10^{7}}} = \gg 1.4 \times 10^{3} \text{ sms}^{-1} \gg \checkmark$		2
8.	С	i	use of $I \propto \frac{1}{r^2} \ll 1.36 \times 10^3 \times \frac{1}{1.5^2} \gg \checkmark$ 604 «W m ⁻² » \checkmark		2
8.	С	ii	use of $\frac{600}{4}$ for mean intensity \checkmark temperature/K = « $\sqrt[4]{\frac{600}{4 \times 5.67 \times 10^{-8}}}$ = » 230 \checkmark		2
8.	C		reference to greenhouse gas/effect ✓ recognize the link between molecular density/concentration and pressure ✓ low pressure means too few molecules (to produce a significant heating effect) ✓ <i>OR</i> low pressure means too little radiation re-radiated back to Mars ✓	The greenhouse effect can be described, it doesn't have to be named	3

Question		on	Answers	Notes	Total	
9.	a		Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) ✓ PE of molecules in gaseous state is zero ✓ (At boiling point) average KE of molecules in gas and liquid is the	Molecules/particles/atoms must be included once, if not, award [1 max]	2 max	
			gases have a higher internal energy ✓			
9.	b	i	ALTERNATIVE 1:			
			flow rate of oxygen = 8 «g s ⁻¹ » \checkmark			
					2	
			ALTERNATIVE 2:			
			Q = «0.25×32×10 ⁻³ ×2.1×10 ⁵ =» 1680 «J» ✓			
			power = «1680 W =» 1.7 «kW »			
9.	b	ii	<i>T</i> =260 «K» √			
			$V = \ll \frac{nRT}{p} = \gg 4.9 \times 10^{-3} \ll m^3 \gg \checkmark$		2	

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	С		ideal gas has point objects ✔	Allow the opposite statements if they are clearly made about oxygen eg oxygen/this can be liquified	
			no intermolecular forces 🗸		
			non liquefaction √		1 max
			ideal gas assumes monatomic particles \checkmark		
			the collisions between particles are elastic \checkmark		