

Markscheme

November 2018

Physics

Higher level

Paper 3

26 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question		on	Answers	Notes	Total
1.	а		$m^{\frac{3}{2}} \checkmark$	Accept other power of tens multiples of $m^{\frac{3}{2}}$, eg: $cm^{\frac{3}{2}}$.	1
1.	b		measured uncertainties «for one oscillation and for 20 oscillations» are the same/similar/OWTTE		
			OR		2
			% uncertainty is less for 20 oscillations than for one ✓		
			dividing «by 20» / finding mean reduces the random error ✓		

(Question 1 continued)

C	Question		Answers	Notes	Total
1.	C	i	Straight line touching at least 3 points drawn across the range \checkmark $ \begin{array}{cccccccccccccccccccccccccccccccccc$	It is not required to extend the line to pass through the origin.	1
1.	С	ii	theory predicts proportional relation $\mbox{\it w} T \propto \frac{1}{d}$, slope = $Td = \frac{c}{\sqrt{g}}$ = constant $\mbox{\it w} \checkmark$ the graph is $\mbox{\it w}$ straight $\mbox{\it w}$ line $\mbox{\it through the origin}$ $\mbox{\it v}$		2

(Question 1 continued)

C	uestion	Answers	Notes	Total
1.	d	correctly determines gradient using points where ΔT≥1.5s OR correctly selects a single data point with T≥1.5s ✓ manipulation with formula, any new and correct expression to enable g to be determined ✓	Allow range 0.51 to 0.57.	4
		Calculation of g ✓ With g in range 8.6 and 10.7 «m s ⁻² » ✓		

Question		on	Answers	Notes	Total
2.	а		to provide a constant heating rate / power		
			OR		1
			to have <i>m</i> proportional to <i>t</i> ✓		
2.	b		due to heat losses <i>«VIt</i> is larger than heat into liquid» ✓		•
			L _v calculated will be larger √		2
2.	С		heat losses will be similar / the same for both experiments		
			OR		
			heat loss presents systematic error 🗸		
			taking the difference cancels/eliminates the effect of these losses		2
			OR		
			use a graph to eliminate the effect ✓		

Section B

Option A — Relativity

C	uesti	on	Answers	Notes	Total
3.	а		a set of rulers and clocks / set of coordinates to record the position and time of events ✓		1
3.	b	i	the time in frame S' is $t' = \frac{L}{c} \checkmark$ but time is absolute in Galilean relativity so is the same in S \checkmark ALTERNATIVE 2: In frame S, light rays travel at $c + v \checkmark$ so $t = \frac{L}{(c+v)-v} = \frac{L}{c} \checkmark$	In Alternative 1, they must refer to S'	2
3.	b	ii	$x = x' + vt$ and $x' = L$ \checkmark «substitution to get answer»		1

Q	uesti	on	Answers	Notes	Total
4.	а		$\frac{0.82c + 0.40c}{1 + \frac{0.82c \times 0.40c}{c^2}} \checkmark$ 0.92c \checkmark		2
4.	b	i	$\Delta t' = \frac{120}{0.40c} \checkmark$ $\Delta t' = 1.0 \times 10^{-6} \text{ (s)} \checkmark$		2
4.	b	ii	$\gamma = \frac{1}{\sqrt{1 - 0.82^2}} = x \cdot 1.747 \checkmark$ $\Delta t = \frac{v \cdot \Delta t'}{c^2} = 1.747 \times \left(1.0 \times 10^{-6} + \frac{0.82c \times 120}{c^2}\right)$ OR $\Delta t = \frac{120}{1.747 \times (0.92 - 0.82)c} \checkmark$ $2.3 \times 10^{-6} \text{ s.s.} \checkmark$		3

Q	uesti	on	Answers	Notes	Total
5.	а		$\gamma = \frac{1}{\sqrt{1 - 0.745^2}} = 1.499 \checkmark$ $x' = \frac{1}{\sqrt{1 - 0.745^2}} = 1.499 \checkmark (1.0 - 0) \checkmark$ $x' = 1.5 \text{ m}$		2
5.	а	ii	$t' = \sqrt[4]{t} \left(t - \frac{vx}{c^2}\right) = \sqrt[3]{1.499} \times \left(0 - \frac{0.745c \times 1}{c^2}\right) = -\frac{1.11}{c} $ $\sqrt[4]{ct'} = -1.1 \text{ m}$		1

(Question 5 continued)

C	uesti	on	Answers	Notes	Total
5.	b	i	line through event E parallel to <i>ct'</i> axis meeting <i>x'</i> axis and labelled P ✓	ct S' frame S frame	1
5.	b	ii	point on x' axis about $\frac{2}{3}$ of the way to P labelled Q \checkmark	ct S' frame S frame	1

(Question 5 continued)

C	uesti	on	Answers	Notes	Total
5.	С	i	ends of rod must be recorded at the same time in frame S' ✓ any vertical line from E crossing x', no label required ✓ right-hand end of rod intersects at R «whose co-ordinate is less than 1.0 m» ✓	S' frame 1.0 m S frame	3
5.	С	ii	0.7 m √		1

Q	Question		Answers	Notes	Total
6.	а		$pc = \sqrt{E^2 - (mc^2)^2} = \sqrt{1.50^2 - 0.511^2} $ «= 1.410 MeV » \checkmark		1
6.	b	i	first equation is due to momentum conservation second equation is due to total energy conservation		2
6.	b	ii	adding $2p_1 = 3.42 \text{MeV c}^{-1} \Rightarrow p_1 = 1.71 \text{MeV c}^{-1}$ \checkmark $p_2 = 0.30 \text{MeV c}^{-1}$ \checkmark		2

Question		on	Answers	Notes	Total
7.	а	i	the distance from the black hole at which the escape speed is the speed of light ✓		1
7.	а	ii	$R_{\rm S} = \frac{2GM}{c^2} = \frac{2 \times 6.67 \times 10^{-11} \times 4.0 \times 10^{36}}{9.0 \times 10^{16}} = 5.9 \times 10^9 \text{ m/s} \checkmark$		1
7.	b		$2 = \frac{1}{\sqrt{1 - \frac{5.9 \times 10^9}{r}}} \checkmark$ rearranged to give r OR $r = 1.33 \times 5.9 \times 10^9 \text{ wm} \checkmark$		3
			$r = 7.9 \times 10^9 \text{ «m» } \checkmark$		

Option B — Engineering physics

Q	uestic	on	Answers	Notes	Total
8.	а		taking torques about the pivot $R \times 4.00 = 36.0 \times 2.5$ \checkmark $R = 22.5$ «N» \checkmark		2
8.	b	i	$36.0 \times 2.50 = 30.6 \times \alpha $ \checkmark $\alpha = 2.94 \text{ «rad s}^{-2} \text{ » } \checkmark$		2
8.	b	ii	the equation can be applied only when the angular acceleration is constant ✓ any reasonable argument that explains torque is not constant, giving non constant acceleration ✓	eg weight is no longer perpendicular to the rod	2
8.	С	i	«from conservation of energy» Change in GPE = Change in rotational KE \checkmark $W\frac{L}{2} = \frac{1}{2}I\omega^2 \checkmark$ $\omega = \sqrt{\frac{36.0 \times 5.00}{30.6}} \checkmark$ « $\omega = 2.4254 \text{ rad s}^{-1}$ »		3
8.	С	ii	$L = 30.6 \times 2.43 = 74.4 \text{ «Js.»}$		1

C	Question		Answers	Notes	Total
9.	а	i	ALTERNATIVE 1: $P_{c} = P_{B} = \frac{P_{A}V_{A}}{V_{B}} \checkmark$ $= \frac{2.8 \times 10^{6} \times 1 \times 10^{-4}}{2.8 \times 10^{-4}} = 1.00 \times 10^{6} Pa \checkmark$ ALTERNATIVE 2 $2.80 \times 10^{6} \times 1.00^{\frac{5}{3}} = P_{c} \times 1.85^{\frac{5}{3}} \checkmark$ $P_{c} = 2.80 \times 10^{6} \times \frac{1.00^{\frac{5}{3}}}{1.85^{\frac{5}{3}}} = 1.00 \times 10^{6} Pa \checkmark$		2
9.	а	ii	ALTERNATIVE 1: Since $T_B = T_A$ then $T_C = \frac{V_C T_B}{V_B}$ \checkmark $= \frac{1.85 \times 385}{2.8} \ll = 254.4 \text{ K. w. } \checkmark$ ALTERNATIVE 2: $\frac{2.80 \times 1.00}{385} = \frac{1.00 \times 1.85}{T_C} \ll \text{K. w. } \checkmark$ $T_C = 385 \times \frac{1.00 \times 1.85}{2.80} \ll = 254.4 \text{ K. w. } \checkmark$		2

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	b		work done = $\langle p \Delta V = 1.00 \times 10^6 \times (1.85 \times 10^{-4} - 2.80 \times 10^{-4}) = \rangle - 95 \langle J \rangle$	Allow positive values.	
		change in internal energy = $\frac{3}{2}p\Delta V = -\frac{3}{2} \times 95 = \mathbf{v} - 142.5 \text{ «J» } \checkmark$			3
			$Q = -95 - 142.5$ \checkmark		
			«-238 J»		
9.	С	i	net work is 288 – 238 = 50 «J» ✓		
			efficiency = « $\frac{288-238}{288}$ = » 0.17 ✓		2
9.	С	ii	along B→C ✓		1

Q	Question		Answers	Notes	Total
10.	а		ice displaces its own weight of water / OWTTE		
			OR		
			melted ice volume equals original volume displaced / OWTTE ✓		2
			no change will take place ✓		
10.	b	i	continuity equation says $v \times A_1 = u \times A_2$		
			«and» $A_1 = 4A_2$		2
			«giving result»		
10.	b	ii	Bernoulli: $\frac{1}{2}\rho v^2 + \rho gH + P_{\text{atm}} = \frac{1}{2}\rho u^2 + 0 + P_{\text{atm}} \text{ w gives } \frac{1}{2} \times 1000 \times \frac{u^2}{16} + 1000 \times 9.8 \times 5.0 = \frac{1}{2} \times 1000 \times u^2 \checkmark$	Accept solving directly via conservation of energy.	2
			$u = 10.2 \text{ cm s}^{-1} \text{ w} \checkmark$		

Q	uestior	Answers	Notes	Total
11.	а	because the mass and the driver are out of phase «by π» ✓	Justification needed for MP2	2
		so upwards ✓		_
11.	b	ALTERNATIVE 1:		
		$\frac{A_1}{A_0} = \sqrt{1 - \frac{2\pi}{22}} = A_1 = 8.5 \text{ «cm} $		2
		ALTERNATIVE 2:		
		driver amplitude is constant ✓		
		so mass amplitude is unchanged at 10 cm ✓		

Option C — Imaging

Q	Question		Answers	Notes	Total
12.	а		each incident ray shown splitting into two ✓ each pair symmetrically intersecting each other on principal axis ✓ for red, intersection further to the right ✓	For MP3, at least one of the rays must be labelled.	3
12.	b	i	rays diverge after passing through lens OR the extension of the rays will intersect the principal axis on the side of incident rays/as if they were coming from the focal point/points in the left side/OWTTE ✓		1
12.	b	ii	by placing a diverging lens next to the converging lens OR make an achromatic doublet ✓	Further details are not required.	

Q	uestic	n Answers	Notes	Total
13.	а	proper construction lines ✓	eyepiece lens	
		image at intersection of proper constructio	n lines √	
			objective lens for feeting the feeting to the feet	2

(Question 13 continued)

C	Question		Answers	Notes	Total
13.	b	i	distance of intermediate image from objective is $\frac{1}{v} = \frac{1}{20} - \frac{1}{24} \text{ ie: } v = 120 \text{ mm} \text{ m} \text{ J}$ distance of intermediate image from eyepiece is $\frac{1}{u} = \frac{1}{60} - \left(-\frac{1}{240}\right) \text{ ie: } u = 48 \text{ mm} \text{ J}$ lens separation 168 mm J		3
13.	b	ii	ALTERNATIVE 1: eyepiece: $m = \frac{-v}{u} = \frac{240}{48} = 5$ AND objective $m = \frac{-v}{u} = \frac{-120}{24} = -5$ Total $m = -5 \times 5 = -25$ ALTERNATIVE 2: $m = \left(\frac{240}{60} + 1\right) \times \left(-\frac{120}{24}\right)$ $m = -25$		2

Q	Question		Answers	Notes	Total
14.	а	i			2
14.	а	ii	to have a critical angle close to 90° ✓ so only rays parallel to the axis are transmitted ✓ to reduce waveguide/modal dispersion ✓	Do not accept "so that most rays are reflected".	1 max
14.	b	i	long path is $\frac{12 \times 10^3}{\sin 84^\circ}$ \checkmark = 12066 «m» \checkmark «so 66 m longer»		2
14.	b	ii	speed of light in core is $\frac{3.0 \times 10^8}{1.52} = 1.97 \times 10^8 \text{ wm s}^{-1} \text{ wm s}^{-1}$ where $\frac{66}{1.97 \times 10^8} = 3.35 \times 10^{-7} \text{ ws } \text{ wm s}^{-1}$		2
14.	b	iii	no, period of signal is 1×10 ⁻⁸ « s » which is smaller than the time delay/OWTTE ✓		1

Q	Question		Answers	Notes	Total
15.	а		protons spin direction changes		
			OR		1
			proton energy state changes ✓		
15.	b		Relaxation time «of signal/proton spin» ✓		
			Location/time delay of the emitted RF signal ✓		2
15.	С		Relaxation time gives information on tissue type/density/health/OWTTE✓		
					2
			Location information provides 3D image/OWTTE √		

Question		Answers	Notes	Total
а		I ₀ e ^{-23×0.041} ✓		2
		$= 0.39 I_0 \checkmark$		
b				2
		so reflected intensity is $0.33 \times 0.39 I_0 = 0.13 I_0$		
С		$0.13I_0 \times 0.39 = 0.05I_0 $		1
2	a b	a b	a $I_0 e^{-23 \times 0.041} \checkmark$ = 0.39 $I_0 \checkmark$ b $R = \ll \left(\frac{6.3 \times 10^6 - 1.7 \times 10^6}{6.3 \times 10^6 + 1.7 \times 10^6}\right)^2 = \gg 0.33 \checkmark$ so reflected intensity is $0.33 \times 0.39 I_0 = 0.13 I_0 \checkmark$	a $I_0 e^{-23 \times 0.041} \checkmark$ = $0.39 I_0 \checkmark$ b $R = \ll \left(\frac{6.3 \times 10^6 - 1.7 \times 10^6}{6.3 \times 10^6 + 1.7 \times 10^6}\right)^2 = 3.33 \checkmark$ so reflected intensity is $0.33 \times 0.39 I_0 = 0.13 I_0 \checkmark$

Option D — Astrophysics

Q	Question		Answers	Notes	Total
17.	а		In cluster, stars are gravitationally bound <i>OR</i> constellation not ✓		
			In cluster, stars are the same/similar age <i>OR</i> in constellation not ✓		
			Stars in cluster are close in space/the same distance		
			OR		2 max
			in constellation not ✓		
			Cluster stars appear closer in night sky than constellation ✓		
			Clusters originate from same gas cloud <i>OR</i> constellation does not ✓		
17.	b	i	d=275 «pc» ✓		1
17.	b	ii	because of the difficulty of measuring very small angles ✓		1
17.	С		mass of gas cloud > Jeans mass √		
			«magnitude of» gravitational potential energy > E _k of particles ✓		2 max
			cloud collapses/coalesces «to form a protostar» ✓		

Q	uestic	on	Answers	Notes	Total
18.	а	i	$\lambda = \frac{2.9 \times 10^{-3}}{4600} = 80.00 \text{ m/s} $		1
18.	а	ii	black body curve shape ✓ peaked at a value from range 600 to 660 nm ✓		2
18.	а	iii	$\frac{L}{L_{\odot}} = \left(\frac{0.73R_{\odot}}{R_{\odot}}\right)^{2} \times \left(\frac{4600}{5800}\right)^{4} \checkmark$ $L = 0.211L_{\odot} \checkmark$		2
18.	b		$M = \text{«} 0.21^{\frac{1}{3.5}} M_{\odot} = \text{»} 0.640 M_{\odot} $	Accept reverse argument 0.64 ^{3.5} = 0.21	1
18.	С		$\frac{T_E}{T_\odot} = \frac{\frac{M_E}{L_E}}{\frac{M_\odot}{L_\odot}} = \frac{0.64}{0.21} = 3.0 \checkmark$ $T \approx 27 \text{ billion years } \checkmark$		2
18.	d		red giant ✓ planetary nebula ✓ white dwarf ✓	do NOT accept supernova, red supergiant, neutron star or black hole as stages	3

Question		on	Answers	Notes	Total
19.	а		measured redshift «z» of star ✓	OWTTE	2
			use of Doppler formula \mathbf{OR} z~v/c \mathbf{OR} $\mathbf{v} = \frac{\mathbf{c}\Delta\lambda}{\lambda}$ to find \mathbf{v}		
19.	b		use of gradient or any point on the line to obtain any expression for either $H = \frac{v}{d}$ or $t = \frac{d}{v}$ \checkmark correct conversion of d to m and v to m/s \checkmark = 4.6×10^{17} «s» \checkmark		3

Question		on	Answers	Notes	Total
20.	а		energy filling all space ✓		
			resulting in a repulsive force/force opposing gravity ✔		2 max
			accounts for the accelerating universe ✓		
			makes up about 70% of «the energy» of universe √		
20.	b		black hole ✓		
			brown dwarf √		
			massive compact halo object /MACHO✔		2 max
			neutrinos ✓		
			weakly interacting massive particle /WIMP ✓		

Q	Question		Answers	Notes	Total
21.	а		«wavelength of light/CBR» $\lambda \propto R$ \checkmark	OWTTE	
			reference to Wien's law showing that $\lambda \propto \frac{1}{T} \checkmark$		3
			combine to get result ✓		
21.	b		$\frac{R_{\text{past}}}{R_{\text{now}}} = \frac{3}{300} = 0.01 \checkmark$		1