Markscheme

November 2018

Physics

Standard level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question		Answers	Notes	Total
1.	a	$m^{\frac{3}{2}} \checkmark$	Accept other power of tens multiples of $m^{\frac{3}{2}}$, eg: $\mathrm{cm}^{\frac{3}{2}}$.	1
1.	b	measured uncertainties «for one oscillation and for 20 oscillations» are the same/similar/OWTTE OR \% uncertainty is less for 20 oscillations than for one \checkmark dividing «by 20 » / finding mean reduces the random error \checkmark		2

(continued...)
(Question 1 continued)

Question			Answers	Notes	Total
1.	C	i	Straight line touching at least 3 points drawn across the range \checkmark	It is not required to extend the line to pass through the origin.	1
1.	c	ii	theory predicts proportional relation «T $\propto \frac{1}{d}$, slope $=T d=\frac{c}{\sqrt{g}}=$ constant » \checkmark the graph is «straight» line through the origin \checkmark		2

(continued...)
(Question 1 continued)

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | d | correctly determines gradient using points where $\Delta T \geq 1.5 \mathrm{~s}$
 OR
 correctly selects a single data point with $\mathrm{T} \geq 1.5 \mathrm{~s} \checkmark$
 manipulation with formula, any new and correct expression
 to enable g to be determined \checkmark | Allow range 0.51 to 0.57. | |
| Calculation of $\mathrm{g} \checkmark$ | | | | |

Question		Answers	Notes	Total
2.	a	to provide a constant heating rate / power OR to have m proportional to $t \checkmark$		1
2.	b	due to heat losses «VIt is larger than heat into liquid» \downarrow L_{v} calculated will be larger \checkmark		2
2.	c	heat losses will be similar / the same for both experiments OR heat loss presents systematic error \checkmark taking the difference cancels/eliminates the effect of these losses OR use a graph to eliminate the effect \checkmark		2

Section B

Option A - Relativity

Question			Answers	Notes	Total
3.	a		a set of rulers and clocks / set of coordinates to record the position and time of events \checkmark		1
3.	b	i	ALTERNATIVE 1: the time in frame S^{\prime} is $t^{\prime}=\frac{L}{C} \checkmark$ but time is absolute in Galilean relativity so is the same in $S \checkmark$ ALTERNATIVE 2: In frame S, light rays travel at $c+v \checkmark$ so $t=\frac{L}{(c+v)-v}=\frac{L}{c} \checkmark$	In Alternative 1, they must refer to S^{\prime}	2
3.	b	ii	$x=x^{\prime}+v t \text { and } x^{\prime}=L \checkmark$ «substitution to get answer»		1

Question			Answers	Notes	Total
4.	a		$\begin{aligned} & \frac{0.82 c+0.40 c}{1+\frac{0.82 c \times 0.40 c}{c^{2}}} \\ & 0.92 c \checkmark \end{aligned}$		2
4.	b	i	$\begin{aligned} & \Delta t^{\prime}=\frac{120}{0.40 c} \checkmark \\ & \Delta t^{\prime}=1.0 \times 10^{-6} « \mathrm{~s} » \end{aligned}$		2
4.	b	ii	$\begin{aligned} & \gamma=« \frac{1}{\sqrt{1-0.82^{2}}}=» 1.747 \\ & \Delta t=« \gamma\left(\Delta t^{\prime}+\frac{v \Delta x^{\prime}}{c^{2}}\right) »=1.747 \times\left(1.0 \times 10^{-6}+\frac{0.82 c \times 120}{c^{2}}\right) \end{aligned}$ $O R$ $\begin{aligned} & \Delta t=\frac{120}{1.747 \times(0.92-0.82) c} \\ & 2.3 \times 10^{-6} « \mathrm{~s} » \end{aligned}$		3

Question			Answers	Notes	Total
5.	a	i	$\begin{aligned} & \gamma=« \frac{1}{\sqrt{1-0.745^{2}}}=» 1.499 \checkmark \\ & x^{\prime}=« \gamma(x-v t)=» 1.499 \times(1.0-0) \checkmark \\ & « x^{\prime}=1.5 \mathrm{~m} » \end{aligned}$		2
5.	a	ii	$\begin{aligned} & t^{\prime}=« \gamma\left(t-\frac{v x}{c^{2}}\right)=» 1.499 \times\left(0-\frac{0.745 c \times 1}{c^{2}}\right) «=-\frac{1.11}{c} » \\ & « c t^{\prime}=-1.1 \mathrm{~m} » \end{aligned}$ OR using spacetime interval $0-1^{2}=\left(c t^{\prime}\right)^{2}-1.5^{2} \Rightarrow « c t^{\prime}=-1.11 » \checkmark$		1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	b	i	line through event E parallel to $c t^{\prime}$ axis meeting x^{\prime} axis and labelled P V		1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	b	ii	point on x^{\prime} axis about $\frac{2}{3}$ of the way to P labelled $Q \checkmark$		1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	c	i	ends of rod must be recorded at the same time in frame $\mathbf{S}^{\prime} \checkmark$ any vertical line from E crossing x^{\prime}, no label required \checkmark right-hand end of rod intersects at R «whose co-ordinate is less than 1.0 m » \downarrow		3
5.	c	ii	$0.7 \mathrm{~m} \checkmark$		1

Option B — Engineering physics

Question			Answers	Notes	Total
6.	a		taking torques about the pivot $R \times 4.00=36.0 \times 2.5 \checkmark$ $R=22.5$ «N» \downarrow		2
6.	b	i	$\begin{aligned} & 36.0 \times 2.50=30.6 \times \alpha \checkmark \\ & \alpha=2.94 \text { «rad s}^{-2} » \checkmark \end{aligned}$		2
6.	b	ii	the equation can be applied only when the angular acceleration is constant \checkmark any reasonable argument that explains torque is not constant, giving non constant acceleration \checkmark		2
6.	c	i	«from conservation of energy» Change in GPE = Change in rotational KE \checkmark $\begin{aligned} & W \frac{L}{2}=\frac{1}{2} I \omega^{2} \checkmark \\ & \omega=\sqrt{\frac{36.0 \times 5.00}{30.6}} \end{aligned}$ $« \omega=2.4254 \mathrm{rad} \mathrm{~s}^{-1} »$		3
6.	c	ii	$L=30.6 \times 2.43=74.4$ « Js »		1

Question			Answers	Notes	Total
7.	a	i	ALTERNATIVE 1: $\begin{aligned} & P_{c}=P_{B}=\frac{P_{A} V_{A}}{V_{B}} \checkmark \\ & =\frac{2.8 \times 10^{6} \times 1 \times 10^{-4}}{2.8 \times 10^{-4}} «=1.00 \times 10^{6} \mathrm{~Pa} » \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & 2.80 \times 10^{6} \times 1.00^{\frac{5}{3}}=P_{\mathrm{c}} \times 1.85^{\frac{5}{3}} \\ & P_{\mathrm{c}}=2.80 \times 10^{6} \times \frac{1.00^{\frac{5}{3}}}{1.85^{\frac{5}{3}}} 《=1.00 \times 10^{6} \mathrm{~Pa} » \end{aligned}$		2
7.	a	ii	ALTERNATIVE 1: Since $T_{B}=T_{A}$ then $T_{C}=\frac{V_{C} T_{B}}{V_{B}} \checkmark$ $=\frac{1.85 \times 385}{2.8} \text { «=254.4K» }$ ALTERNATIVE 2: $\begin{aligned} & \frac{2.80 \times 1.00}{385}=\frac{1.00 \times 1.85}{T_{\mathrm{c}}} \text { «K» } \\ & T_{\mathrm{c}}=385 \times \frac{1.00 \times 1.85}{2.80} \text { «=254.4 K» } \end{aligned}$		2

(continued...)
(Question 7 continued)

Question			Answers	Notes	Total
7.	b		$\begin{aligned} & \text { work done }=« p \Delta V=1.00 \times 10^{6} \times\left(1.85 \times 10^{-4}-2.80 \times 10^{-4}\right)=»-95 \text { « } \mathrm{J} » \\ & \text { change in internal energy }=« \frac{3}{2} p \Delta V=-\frac{3}{2} \times 95=»-142.5 \text { «J» } \\ & Q=-95-142.5 \checkmark \\ & \text { «-238 J» } \end{aligned}$	Allow positive values.	3
7.	c	i	net work is $288-238=50$ « $\mathrm{J} » ~ \checkmark$ $\text { efficiency }=« \frac{288-238}{288}=» 0.17 \checkmark$		2
7.	c	ii	along B \rightarrow C \checkmark		1

Option C - Imaging

Question			Answers	each incident ray shown splitting into two \checkmark each pair symmetrically intersecting each other on principal axis \checkmark for red, intersection further to the right \checkmark	
8.	a				
8.	b	i	rays diverge after passing through lens OR the extension of the rays will intersect the principal axis on the side of incident rays/as if they were coming from the focal point/points in the left side/OWTTE \checkmark		
8.	b	ii	by placing a diverging lens next to the converging lens OR make an achromatic doublet \checkmark		

(continued...)
(Question 9 continued)

Question			Answers	Notes	Total
9	b	ii	ALTERNATIVE 1: eyepiece: $m=\frac{-v}{u}=\frac{240}{48}=5$ AND objective $m=\frac{-v}{u}=\frac{-120}{24}=-5 \checkmark$ Total $m=-5 \times 5=-25 \checkmark$ ALTERNATIVE 2: $\begin{aligned} & m=\left(\frac{240}{60}+1\right) \times\left(-\frac{120}{24}\right) \checkmark \\ & m=-25 \end{aligned}$	Accept positive or negative values throughout.	2

Question			Answers	Notes	Total
10.	a	i	$\begin{aligned} & « \sin \theta_{\mathrm{c}}=\frac{n_{1}}{n_{2}} » n_{1}=1.52 \times \sin 84.0^{\circ} \\ & n_{1}=1.51 \end{aligned}$		2
10.	a	ii	to have a critical angle close to $90^{\circ} \checkmark$ so only rays parallel to the axis are transmitted \checkmark to reduce waveguide/modal dispersion \checkmark		1 max
10.	b	i	long path is $\frac{12 \times 10^{3}}{\sin 84^{\circ}} \checkmark$ $=12066$ « m» «so 66 m longer»		2
10.	b	ii	speed of light in core is $\frac{3.0 \times 10^{8}}{1.52}=1.97 \times 10^{8} « \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$ time delay is $\frac{66}{1.97 \times 10^{8}}=3.35 \times 10^{-7}$ «s»		2
10.	b	iii	no, period of signal is 1×10^{-8} «s» which is smaller than the time delay/OWTTE \checkmark		1

Option D - Astrophysics

Question		Answers	Notes	Total	
11.	a		In cluster, stars are gravitationally bound $O R$ constellation not \checkmark In cluster, stars are the same/similar age $O R$ in constellation not \checkmark Stars in cluster are close in space/the same distance OR in constellation not \checkmark Cluster stars appear closer in night sky than constellation \checkmark Clusters originate from same gas cloud $O R$ constellation does not \checkmark		
11.	b max	i	d=275 «pc» \checkmark		$\mathbf{1}$
11.	b	ii	because of the difficulty of measuring very small angles \checkmark		$\mathbf{1}$

Question			Answers	Notes	Total
12.	a	i	$\lambda=« \frac{2.9 \times 10^{-3}}{4600}=» 630 « n m » \checkmark$		1
12.	a	ii	black body curve shape \checkmark peaked at a value from range 600 to $660 \mathrm{~nm} \checkmark$		2
12.	a	iii	$\begin{aligned} & \frac{L}{L_{\odot}}=\left(\frac{0.73 R_{\odot}}{R_{\odot}}\right)^{2} \times\left(\frac{4600}{5800}\right)^{4} \checkmark \\ & L=0.211 L_{\odot} \checkmark \end{aligned}$		2
12.	b		$M=« 0.21^{\frac{1}{3.5}} M_{\odot}=» 0.640 M_{\odot} \checkmark$		1
12.	c		Obtain «line» spectrum of star \checkmark Compare to «laboratory» spectra of elements \checkmark		2
12.	d		red giant \checkmark planetary nebula \checkmark white dwarf \checkmark		3

Question		Answers	Notes	Total
13.	a	measured redshift «z» of star \downarrow use of Doppler formula $O R z \sim v / c$ OR $v=\frac{c \Delta \lambda}{\lambda}$ to find $v \checkmark$		2
13.	b	use of gradient or any point on the line to obtain any expression for either $H=\frac{v}{d}$ or $t=\frac{d}{v} \checkmark$ correct conversion of d to m and v to $m / s \downarrow$ $=4.6 \times 10^{17} \text { «s» }$		3

